
The COMB Cookbook

Marc W. Pound, John Bally and Robert W. Wilson

August 22, 1990 — for August 1990 version of COMB

Contents

1 Introduction 3
1.1 The COMB Philosophy . 3
1.2 About the Cookbook . 3

2 Getting Started 3

3 Data Formats: Scans and Stacks 4

4 Commands 5
4.1 Argument types . 5
4.2 Command Syntax . 6
4.3 Hand-hold Mode . 6
4.4 COMB’s History Mechanism: Recalling and Editting Commands 7

5 Getting Data Into COMB 8
5.1 tar or dd Tapes . 8
5.2 Stand-alone Programs . 8
5.3 Spectra in FITS Format . 8

6 Manipulating and Plotting Spectra 9
6.1 Baseline Removal . 9
6.2 Sorting and Storing Spectra . 10
6.3 Bad Channel Removal . 12
6.4 Folding Frequency-Switched Spectra . 12
6.5 Do Loops . 12
6.6 Co-adding Spectra . 13
6.7 Redirecting Output . 14
6.8 Obtaining Hard Copies of Plots . 14

7 Making Maps 14
7.1 Relative Coordinates . 15
7.2 Spatial-Spatial Maps . 15
7.3 Spatial-Velocity Maps . 16
7.4 Recontouring Maps with cp . 16
7.5 Reading/Writing FITS images . 17

1

CONTENTS 2

8 Advanced Processing: Macros 17
8.1 Variables . 18

8.1.1 Global Variables . 18
8.1.2 Global Strings . 18
8.1.3 Stack Header Variables . 19
8.1.4 Labelling Inside Plots . 20

8.2 Macro Arguments . 20
8.3 Some Useful Macros . 21

9 Figures 23

A How to Install COMB 33

B FITS Software 35

C List of COMB Commands 36

D For More Info 38

1 INTRODUCTION 3

1 Introduction

COMB is a powerful analysis package for single-dish radio astronomical spectral line data reduction. It
can be installed on any computer using the UNIX1 operating system (see Appendix A). At present, it is
most frequently used on SUN workstations, although it has been installed on VAX and other computers,
including 386 machines running UNIX. The program was written mostly by R. W. Wilson at AT&T
Bell Laboratories in C and FORTRAN.

1.1 The COMB Philosophy

COMB (pronounced cäm) has been designed to make spectral line data reduction easy and automatic.
As the Bell Labs database has grown (it now exceeds 700,000 spectra), this automatic feature has been
indispensible. COMB’s 61 simple commands can be concatenated using semi-colons (a lá UNIX), nested
in do-loops, or made into saveable macros (which themselves can be nested). Even for an inexperienced
user, the process of reducing hundreds of spectra and making a contour map (or FITS image) can be
reduced to a task requiring less than ten minutes.

1.2 About the Cookbook

This cookbook will acquaint neophyte users of COMB with the basic tools necessary to reduce their data
painlessly. It is intended to supplement COMB’s on-line documentation by providing simple recipes
for the basic reduction operations. Section 2 provides information about getting started. Section 3
introduces data format. Section 4 describes commands syntax and arguments. Section 5 tells how to get
external data, such as FITS, into COMB. Section 6 deals with simple manipulation of spectra such as
baseline removal, plotting and storing. Section 7 is all about making maps. Section 8 describes how to
set-up and use macros. Throughout this cookbook, input to be typed by the user appears in this font (a
carriage return is implied at the end of each user input), this font will be used for command names,
command arguments and COMB output messages,, and this font is used for UNIX file names. We
will use $ to symbolize the UNIX operating system prompt and the -> symbol is your friendly COMB
prompt.

This cookbook was written using the LATEX Document Preparation System developed by Leslie
Lamport. A copy of the cookbook LATEX document is in the file /usr/comb/doc/cookbook.tex.

2 Getting Started

COMB can be run from any type of terminal. It is, of course, most useful on one with some sort of
graphics capability. In order to have COMB plot graphics on a CRT, you need a graphics terminal or
a window which emulates a graphics terminal. The graphics terminals which are supported are hp2648,
hp2623, tek4010, and vt100 (with retrographics). (COMB has a very nice interface to tek4112, AT&T
5620 and AT&T 630 terminals, but they aren’t common.) It will be most convenient if your environment
variable TERM is set to one of the above if you are using one of those terminals. The most common
way to get COMB graphics is with a terminal emulator. With a PC, PCPLOT2 minimally emulates
the vt100/tek4014 combination. With a Macintosh, Versaterm is a very nice emulator of vt100/tek4014.
In either of these cases have TERM=vt100 in your environment. With a Sun workstation, the best
emulator is package is gterm from NOAO/IRAF. With TERM=SUN or TERM=sun, COMB expects a
tek4014 emulator such as gterm in the window. After you have installed COMB (see appendix A), sit
down at your terminal and type comb. If you have gterm, do this in the gterm window.

1UNIX is a registered trademark of AT&T.
2PCPLOT is a registered trademark of IBM.

3 DATA FORMATS: SCANS AND STACKS 4

$ comb Start COMB
Welcome to comb

->

Most COMB commands consist of two-character names chosen to be suggestive of their function.
There are also a few single character commands. The command lc (list commands) gets you a summary
list. Appending the string ?! to any command name, will give the on-line documentation about that
command. The string ?? appended to the command will give the input arguments for that command.

-> lc Produce a listing of COMB commands along with a one-line
description.

-> pl ?! Give detailed description of the pl (plot) command which dis-
plays spectra on the screen.

-> e ’ls’ Execute the UNIX command ls for the directory. COMB
doesn’t care if you use single or double quotes, as long as they
are matched.

-> q Exit COMB . . .

$. . . and get the shell prompt from UNIX.

Typing help at the COMB prompt will give you instructions about how to get information about syntax,
data formats, and commands.

3 Data Formats: Scans and Stacks

COMB assumes that data exists in two forms – raw spectra which have been untouched by human hands
called scans and spectra which may have been processed called stacks. These data are located on disk
in directories. At Bell Labs, scans are stored by the telescope computer in files in the directory /cdata
and can be accessed by the gt (get) command, e.g., gt 86a614 will get the 614th spectrum from the
raw data file /cdata/c86a. Any filename can be specified to be the raw data file with nf (name file),
e.g., nf ’/mydirectory/mydata’.

At most institutions, raw data files will not exist, and all spectra will reside in “stacks directories”.
A stacks directory contains several files called data, default, index, macros, and search which have the
following functions:

data Contains the raw headers and spectra in binary form.
default ASCII file containing information on user preferences such as

relative coordinates.
index A table of pointers to the data location corresponding to the

begining of each stack in data.
macros ASCII files containing the user macros applicable to these stacks

only.

search A lookup table linking stack numbers to locations in the sky.

Stack directories are accessed from inside COMB by ns (name stacks), e.g., ns ’/usr/jb/data/Orion’.
Stacks in a directory are numbered sequentially starting at 1. The first three stacks, however, are special
temporary (“core-resident”) locations for spectra, similar to the stack on a pocket calculator, and are
not actually “members” of the stacks files.

4 COMMANDS 5

Stack 1 The current spectrum. When you gt or rt (retrieve) a spec-
trum, it is automatically stored in stack 1. pl will always plot
the contents of stack 1.

Stack 2 Generally used as an accumulator for co-adding spectra.

Stack 3 an additional temporary location.

Stacks 4 through 9 are by default left empty by COMB when automatically storing data, and hence
ignored by commands like cm that use stacks data (you can reset these defaults.) Thus, they can be used
as special storage locations. They are part of the stacks files and will be saved between COMB sessions.

A stacks directory can be created in several ways. The ns command will create a new directory if the
named one doesn’t yet exist. Spectra can then be stored using st (store). Alternatively, a stand-alone
program (see §5.2) can create the stacks directory and associated files, storing the data and building the
index file. (COMB will build the search file from the data, see documentation for up, [update search
file]). And, of course, a stacks directory from another institution can be copied from tape. More details
of the stack format are given in §8.1.3.

4 Commands

4.1 Argument types

A COMB command consists of 2 basic parts: a command name followed by a delimited list of arguments.
The delimiters may be commas or spaces (it’s okay to mix the two). The command name is a one- or
two-character mnemonic for the function, e.g., cm is contour map. The arguments can take a variety of
forms: numerical, character string, numerical range, list, flag, toggle, and expression. The command lk
(look), which displays the location of spectra on the sky, is a good example of most of these types.

-> lk ??

Look at where stacks are ‘‘lk’’

Horizontal limits ‘‘xl’’

Left x ‘‘lx’’- REAL, OLD(0)

Right x ‘‘rx’’ - REAL, OLD(0)

Vertical limits ‘‘yl’’

Bottom y ‘‘by’’ - REAL, OLD(0)

Top y ‘‘ty’’ - REAL, OLD(0)

Stack number limits ‘‘sn’’

Low ‘‘l’’ - INTEGER, OLD(10)

High ‘‘h’’ - INTEGER, OLD(262143)

Center Frequency (MHz) ‘‘fr’’ - REAL RANGE, OLD(0 300000)

Plot stack numbers ‘‘psn’’ - FLAG(no)

Horizontal label ‘‘hlb’’ - STRING, AUTOMATIC

Vertical label ‘‘vlb’’ - STRING, AUTOMATIC

Main label ‘‘mlb’’ - STRING, AUTOMATIC

Check search vs stack ‘‘chk’’ - FLAG(no)

-> lk,20,–10,–10,15,10,98,110000 111000 psn:yes mlb:‘My Stacks’

4 COMMANDS 6

The first four arguments are examples of numerical (in this case, REAL) input. These four specify
that lk plot only those stacks between the relative coordinate offsets −10 ≤ x ≤ 20, −10 ≤ y ≤ 15.
The next two arguments are also numerical (INTEGER). They tell lk to use only stacks between stack
numbers 10 and 98. If real numbers had been used here, the COMB parser would round them to the
nearest integers. The next argument is an example of a range. Ranges’ limits are separated by the
underscore () character. This argument specifies the range of frequencies (MHz) that spectra must
satisfy for lk to plot their location. The next argument, psn:, is a flag which makes lk mark a location
with the stack number(s) at that location rather than the default crosses (+). A flag simply tells the
parser to turn on or off a particular feature of a command. Note that psn: is the same as psn:yes and
leaving psn: out of the argument list is the same as psn:no. The final argument in the list is a string,
indicating the main label on the plot should be ‘My Stacks’. Figure 1 is the result (a “look map”) of the
above command. A toggle is similar to a flag, except that it will turn a feature off if it is on and vice
versa, e.g.,

-> op ap: Turn on automatic plot option (so you don’t have to keep typ-
ing pl after rt).

-> op ap: Turn off automatic plot option.

Note flags and toggles delineated by a colon do not also need to be separated by commas or spaces.

-> op ap:ortho:yw:

is syntactically legal. The type list is a delimiter-separated list of variables all describing the same
argument, e.g., cp sc:[0,20,2,39,3,49]. We will meet the last argument type, expression, when we cover
do loops (§6.5).

Notice that some of arguments in the syntax tree above are described by the words OLD, AUTO-
MATIC, or SET. An OLD variable starts out at a default value, shown in parentheses, that will stay
changed once it is changed by the user. It’s previous value is remembered and accessible via the &
operator (see §6.2). An AUTOMATIC argument is a number (or string) calculated by COMB which
can have a variable default value, e.g., axes lengths or labels on a spectral plot. A SET argument has
a set (as opposed to a variable) default value. For an AUTOMATIC or SET arguments, the previous
value is not remembered and therefore not accessible via the & operator.

4.2 Command Syntax

Command arguments are arranged in a syntax tree, with a unique label to specify each node of the tree.
This syntax tree is what is printed out when you type ?? after a command name. Labels, such as psn:,
mlb:, ap: in the above examples, must be delineated by a colon. If the arguments are entered in the
order in which they appear in the syntax tree, then the labels are not needed. Use of labels, however,
allows arguments to be entered in any order or arguments to be skipped altogether, if desired, and is
also handy for remembering arguments in the list. Arguments following labels may take optional square
brackets, e.g., lk fr:[110200 110300]. Square brackets are required when the arguments type is a list,
e.g., cp sc:[0,20,2,39,3,49].

4.3 Hand-hold Mode

The easiest way to learn the input list of a command is to use COMB’s hand-hold mode. Typing ?
after a command name will cause COMB to prompt you for each argument using the same syntax tree
that is printed out when you use ??. For arguments with default values (OLD, AUTOMATIC, or SET),
entering a carriage return at the argument prompt will input the default value. After you input all the

4 COMMANDS 7

arguments, COMB will tell you the most general syntactically correct form everything you just typed,
e.g.,
-> lk ?
...
You could have typed:

lk xl:[10,-10] yl:[-5,5] sn:[10,20000] fr:0 300000

The command as you could have typed it is added to your history file (see below).

4.4 COMB’s History Mechanism: Recalling and Editting Commands

The COMB history mechanism, a way of editting and/or re-executing previous command lines, is based
on that of the UNIX Korn shell, ksh. It is essentially a one-line version of the screen-editor program,
defined by the environment variable VISUAL in the .profile (or .login) file in your home directory, which
operates on a command string. ksh currently supports the editors vi and emacs. You do not have to
be running ksh as your normal UNIX shell to make use of the COMB history mechanism. Anything
typed at the -> prompt is stored in the file .combhistory in your home directory. Therefore, commands
issued during previous COMB sessions are accessible to the history mechanism.

The history mechanism is enabled by the escape ([ESC]) key for vi mode, or the control ([CNTL])
key for emacs mode. In vi mode, [ESC] k or [ESC] – will scroll back through the stored command lines
([ESC] j or [ESC] + for forward scrolling), which you can edit using normal vi commands. In emacs
mode, [CNTL] P scrolls backwards and [CNTL]N scrolls forward. In either mode, a carriage return will
cause the currently displayed command line to be executed. For more information on the editor features,
consult the vi or emacs manuals, or read the “editting mode” sections under man ksh.

In addition to the ksh-like history mechanism, COMB also has an “command archive” mechanism
(left over from the days before ksh), allowing archiving, re-execution, or editting of the immediately
previous command line. It is completely distinct from the ksh-like history. COMB keeps the previous
command line and allows the user to access it with the following commands:
. or .e Execute the previous (old) command as it is.
.p Print the old command.
.an Store the old command in archive n, n = 0 through 9
.n Retrieve the command in archive n.
.s/xxx/yy Edit the old command substituting the string yy for the first

occurance of xxx. The delimiter may be any character, not
just ‘/’.

For example,
-> gt 88a6789

-> li 1 Remove a first-order baseline
-> .a0 Store “li 1” in archive 0
-> gt dt: Get next data scan
-> .a1 Store “gt dt:” in in archive 1
-> .0 Retrieve command line in archive 0
-> .p print it
li 1

5 GETTING DATA INTO COMB 8

-> . and execute it
-> .1 Retrieve command line in archive 1 (gt dt:)
-> . and execute it

5 Getting Data Into COMB

There are 3 simple ways to get data into COMB.

1. Move a stacks directory created by another COMB program from tape to disk using the UNIX
utilities tar or dd.

2. Use af (attach FITS) to read in FITS data (spectra or images) from tape or disk.

3. Use a stand-alone program to convert data from another observatory into spectra in COMB format
and write the spectra into a stacks directory.

5.1 tar or dd Tapes

Stacks files written to tape using the UNIX tape archive facility tar can be extracted by tar xf
tape drive stacks directory. For dd, use dd if=tape drive of=stacks file. tar is preferable since it copies
directories recursively. dd does not. See documentation under man tar and man dd.

5.2 Stand-alone Programs

A few C programs have been written to convert spectra from other observatories into COMB stacks.
They are:

arec2comb Convert spectra from the Boston University-Arecibo HI Survey
into COMB stacks. Written by Marc Pound.

FITS TO STACKS Convert spectra in IRAM FITS format into COMB stacks.
Written by John Bally.

cube Convert a FITS datacube to COMB stacks. It assumes the
datacube is has spatial coordinates in a ‘relative coordinate’
system (see cm ?! and rc ?!) and does not deal with sky
projections at all. Written by Marc Pound.

After creating a stacks directory with one of these programs, you must run up on them to make a search
file. These programs are available on request by their authors. If you wish to write your own program
for converting data from other formats, these can be used as templates.

5.3 Spectra in FITS Format

Imagine you have just received a data tape from the SEST in Chile containing spectra written in IRAM’s
FITS format. You can use the function af (attach FITS file) to read a spectrum into stack 1, ns to
make the stacks directory and st to store the spectra in it. [Note: af will not work unfolded frequency-
switched spectra, as there is no single-dish FITS standard for such data. If a standard is ever agreed
upon, af will be re-written accordingly.]

6 MANIPULATING AND PLOTTING SPECTRA 9

-> af ’dev/rmt12’ st: Attach the tape drive /dev/rmt12 and read
the first spectrum from the FITS tape into
in stack 1.

-> ns ’SESTdata’ Name the stacks directory “SESTdata” as
the present working directory for the spec-
tra. Since this is a new directory, ns will
create it.

In command ns Creating stacks Directory SESTdata

Do you want to continue? y

* * CREATING SESTdata/macros * *
-> st a: Store the spectrum (st) in the 1st avail-

able stack (a:) in the stacks directory. In
this case, there are no spectra in the di-
rectory,so the data will go into stack 10.
(Recall COMB leaves stacks 4 through 9
empty for special use.

Stored in stack 10

-> af ’/dev/rmt12’ st: Read an other spectrum into stack 1.
-> st a: Store it in the next available stack, in this

case, stack 11.
Stored in stack 11

-> do 10 {af ’/dev/rmt12’ st:; st a:} Repeat the FITS file-reading operation 10
more times. This fills stacks 12 through 21
with data. Note the use of “;” to concate-
nate COMB commands. Also note the
do loop, whose argument is in the curly
brackets.

Stored in stack 12
...
Stored in stack 21
-> rt 10 Retrieve stack 10 and place it in stack 1.

Note rt is used to place stacks in stack 1
and gt is used to place scans in stack 1.

-> pl Plot spectrum. See Figure 2a.

6 Manipulating and Plotting Spectra

6.1 Baseline Removal

Before removing a baseline from a spectrum, you have to retrieve the spectrum and set the range of
velocities to be excluded from the baseline fit because they contain a line. To do this, set the so-called
“use array” with us.

-> us −30 30 Set use array to exclude the range –30 to 30 in the current plot
units. The default is velocity in km s−1. (pl ?! for details on
plot units.)

6 MANIPULATING AND PLOTTING SPECTRA 10

-> li 1; pl Take out a 1st order baseline and plot the result. (Figure 2b)
Note that the horizontal line just above the axis label has a
segment missing just in the range –30 to 30 km s−1. This line
always shows the current state of the use array.

-> us st: Save the baseline parameters for future use. They can be reset
with us s: to their initial state.

-> st 10 Store the spectrum in stack 10 (which is where it came from).
Note that the original data will be overwritten. COMB catches
this and asks your permission to overwrite the data and will
do so only if you respond with a “y”.

In command st stack 10 contains data.

Do you want to continue? y

Baselines up to order 15 can be removed from spectra. The usual caveats apply to high-order baseline fits.
For frequency-switched data, channels within a specified width of the signal and reference channels are
automatically excluded from the fit in addition to the use array. COMB sets this width automatically,
but it can also be specified as an argument to li (see li ?!). You can set the use array with the cursor
using the macro uscr defined in the global macros file (see §8 and cr ?!).

The flag xt: will cause li to remove the same baseline from stack 2 as it does from stack 1. This is
useful for removing baselines from spectra where the emission line takes up too much of the band, leaving
too few channels from which to compute a baseline fit, and where you have a broader band spectrum
taken simultaneously.

-> gt n6r2655 exp:; st 2 Get scan from spectral expander backend, in this case 12.5
kHz channel width. The line takes up too much of the band to
remove a reliable baseline.

-> pl hst:tk: Plot the spectrum histrogram style with no tick grid. Figure
3a.

-> op ap: Turn on auto-plot option
-> gt nbe: Get the narrow backend of the same scan (250 kHz channel

width). Figure 3b.

-> us −9 0 st:; li 1 xt: Compute baseline parameters from stack 1 and remove the
baseline from stacks 1 and 2. Figure 3c.

-> pl h:−10,0; rt 2; pl ovl: Compare the baseline fits by overlaying the two spectra and
displaying a limited horizontal range. Figure 3d.

The flags exp: and nbe: are peculiar to Bell Labs since spectra taken simultaneously with different
backends are given the same scan number. You will most likely use rt to retrieve two separate stacks,
instead of gt for two separate backends. COMB will give a warning if the stacks have different scan
numbers, but you can still remove the baseline.

6.2 Sorting and Storing Spectra

Suppose you want to take data from one stacks directory, do something with it, and store the result
in a second directory. You can attach two stacks directories, called the foreground and background
directories, to COMB simultaneously. Let’s assume that you want to reduce the SEST data from the
previous example without overwriting the original unreduced data. You need to open a second stacks
directory (directory two). This can be done by

-> ns ’SESTreduced’ dt: The flag dt: stands for “directory two”

6 MANIPULATING AND PLOTTING SPECTRA 11

In command ns Creating stacks Directory SESTreduced.

Do you want to continue? y

* * CREATING SESTreduced/macros * *

At this point two directories are open: The foreground directory is SESTdata and the background
directory is SESTreduced. Data can be easily transferred between the two directories.
-> ns p: To see the names of the working directo-

ries.
Foreground - SESTdata, last stk = 3, next = 22

Background - SESTreduced, last stk = 3, next = 10

-> rt 10; li 3; st a:dt: Retrieve stack 10, remove a 3rd order
baseline, and store the result in directory
two.

Stored in stack 10

-> do 11 {rt &+1; li 3; st a:dt:} Remove a 3rd order baseline for the next
11 spectra in the foreground directory, stor-
ing the results in the next available stack
locations in the background directory. See
§6.5 for more on do loops.

Stored in stack 11
...
Stored in stack 22

-> . Re-execute the last command (the do loop.)
Stored in stack 13
...
Stored in stack 34

In this example, a feature of COMB is illustrated: the idea of incrementing the values of OLD
variables. COMB stores the values of command arguments of type OLD each time they are changed
by a new issuance of the command. In the call rt 10 the value of the stack argument, 10, has been
explicitly stated. When COMB encounters & in an argument, it substitutes the previous value of this
argument for the &. Thus &+1 increments the previous value by 1, &+2 increments by 2, etc., storing the
new value after the operation is completed. Similarly, &-1 decrements the value by 1. Thus, each time
rt &+1 is issued in the do loop, the value of the stack argument is incremented by 1, and the next stack
is retrieved. Any syntactically legal expression can follow the &,

-> rt &∗8ˆ(1/3) Retrieve the the stack whose number is twice the current stack
number

-> li &∗& Remove the square of the previous baseline order.

This mechanism can be used to change any numerical argument (of type OLD) of a command by any
amount.

To empty stack of its contents, use em.

-> em 22 Empty stack 22
-> em 23 34 Empty stacks 22 through 34 inclusive.

Since em simply marks the stacks as overwrite-able, you can get back emptied stacks, but only if they
have not been overwritten and you have not quit the session of COMB in which they were emptied. If

6 MANIPULATING AND PLOTTING SPECTRA 12

you quit COMB, the emptied stacks are not retrievable.

-> em 22 34 rev: Un-empty stacks 22 through 34 inclusive

6.3 Bad Channel Removal

Bad channels in spectra can be removed with el (eliminate). This command accepts a range of either
channel number(s), the velocity, or the frequency of the bad channel(s); the choice is set by the current
plot units. The eliminated channels are set to the average of the two adjacent channels. Since el only
works on stack 1, you must retrieve the desired stack first.

To identify the bad channel, you can use fl (flag) which displays a vertical line at the specified value.
For example,

-> rt 10; pl ch: Plot a spectrum using channels for horizontal plot units.
-> fl 67 Flag channel 67.
-> el 67; st 10 dc: Eliminate the channel, store the spectrum back in stack 10 and

don’t check (dc:) for the existence of data already there.

-> rt 11; el 67 69; st 11 dc: Eliminate channels 67 through 69 inclusive from stack 11.

The command bc is similar to el except that is saves the eliminated channel numbers and eliminates
them from any scan subsequently “gotten” with gt. These can be cleared with bc cl:.

6.4 Folding Frequency-Switched Spectra

For frequency switched data, if the reference frequency falls within the band of the backend, you can
fold the spectrum to double the effective integration time using fo.

-> gt dt:; li 1; rm Get data, remove baseline, print rms noise level
rms = 0.5407 system noise = 566.43

-> fo; li; rm

rms = 0.3636 system noise = 380.90

6.5 Do Loops

Most likely, you’ll need to perform the same operation on many spectra. do loops make this easy. The
simplest form of such a loop consists of do followed by an argument which specifies the number of
repetitions of the loop, and a string of commands delimited by either curly brackets or by quotation
marks (single or double). Curly brackets can be nested to any reasonable depth, quotes cannot be nested.

-> rt 10; do 100 {do 10 {el 67; fo; li 2; st a:dt:; rt &+1}; pl}
Eliminate bad channel, fold spectrum, and remove baseline.
Do this to 1000 spectra, plotting every 10th one. Store the
reduced spectra in directory two.

The conditional loops, do-while and do-if-else, are also available. In these cases, do evaluates an expres-
sion at the beginning of the loop and only executes the loop if the expression evaluates to non-zero.

-> rt &+1 t:; do i:{.test} {el 67; fo; li 2; st a:dt:} el:{p ”No Stack”}

6 MANIPULATING AND PLOTTING SPECTRA 13

Normally, rt will return an error if you try to retrieve a stack which is empty or doesn’t exist. The t:
flag following rt sets the variable .test to 1 if the stack exists and is full and 0 otherwise, and prevents
rt from returning an error. That is, an empty stack is simply skipped. Thus, the do loop command
string is executed only if the stack exists and is full, else the string “No Stack” is printed. Null else
statements are made by eliminating the el: flag. Similarly, a do-while loop will execute the command
string only if the expression is true.

-> rt 10 t:; do w:{.numst < 1000} {el 67; fo; li 2; st a:dt:; rt &+1 t:}
Execute the loop until stack number 1000 is retrieved.

The string .numst is an example of a stack header variable. These will be explained in §8.1.3. Do-while
loops may also take an else clause. do loops with local variables as part of the control expression should
use parentheses to delimit the local variable, i.e., do i:{(#1)==0)}{...}. For more on expressions,
type docp at the -> prompt.

6.6 Co-adding Spectra

To co-add (or simply add) spectra, use co (combine). co averages the data in two stacks using the
weight of each channel. The result is always stored in stack 2. The default is to use stacks 1 and 2. So
to co-add stacks 10 and 11:

-> rt 10;st 2

-> rt 11;co

Alternatively,

-> co 10 11

will accomplish the same thing, storing the result in stack 2. Using the add: flag will cause co to sum
the stacks instead of averaging them. To subtract two spectra

-> rt 10;rs −1;st 2 Rescale stack 10 by −1 and store in stack 2

-> co 11 add: Add stack 11 to stack 2. Note this is the same as rt 11;co add:

co automatically checks for compatability (e.g., position, LSR velocity, process type) of the two stacks.
If any differences are found, you will be asked if you want to continue. To suppress this checking, use
the dc: (don’t check) flag.

Frequently, you will want to go through a stacks directory and co-add all spectra at the same position.
xf (transfer stacks) will do this automatically. xf transfers stacks from the foreground directory to the
background directory, combining all matching spectra into a single one before storing it in directory two.
It will not combine spectra with the same scan number. You can set the “match parameters” such as
positional tolerance, stack limits and center frequency.

-> ns ’SESTReduced’ Move SESTReduced to the foreground directory.
-> ns ’SEST.xf, dt: Open up a new background directory.
-> xf ptol:.5 v:1 Transfer all stacks from SESTReduced to SEST.xf , combining

stacks within 0.5′ of each other, and giving a brief report about
the process. The flag v: stands for “verbosity” and is an
integer between 0 and 3, 0 giving no information about the
transfer.

7 MAKING MAPS 14

6.7 Redirecting Output

You can redirect anything that COMB writes to the standard output using ro. It is useful for generating
files suitable for plotting with mongo. The general form of this command is ro options; command-
string, where the standard output of the command-string will be redirected according to options. The
default option is to write the output to the file comb.out in your home directory. (You can change the
file name with ro fn:’filename’). The standard output can be piped through any UNIX system call with
ro p:, e.g., ro p:“grep hlb”; cm ??. Most of COMB’s diagnostics and prompts are written to the standard
error and won’t be redirected.

For efficiency, the file is not closed between successive calls to ro. This can cause confusion if you
remove a file (which COMB still has open) with some other UNIX process, and then try to write to it
again with COMB, since the file will still exist but not have a directory entry. (That is, ls will not list
the file). To force COMB to close the file, you can either quit COMB, or use the fn: flag to redirect
output to some other file. ro t: will close an opened file, truncate it to zero length, and open it again.

Normally, the carriage return at the end of a command line containing ro tells COMB to revert to
the normal standard output (i.e., the terminal). The flag q: is used to force COMB to do this. It is
used if you wish to turn ro on and off several times on a single command line (or in a macro), e.g., ro;
. . . ; ro q:; . . . ; ro; Use of ro q: does not close the output file.

You can also redirect the standard input with ri.
If you are new to UNIX, you should familiarize your self with standard input, standard output, and

pipes before using ro.

6.8 Obtaining Hard Copies of Plots

COMB supports the following types of hardcopy output devices: PostScript3 language laser printers,
Impress language laser printers and HP7580 pen plotters using hpgl. Appendix A gives details on how
to let COMB know the name of your printer. A plot is generated by issuing the command hc (hardcopy)
followed by a flag indicating the first letter in the name of your printer. For instance, at Bell Labs, our
PostScript printer is named “apost”:
-> hc a: Print plot on the “apost” printer.
-> hc pf: Send plot to a PostScript file (pf:) in /tmp.

7 Making Maps

Two types of maps are supported in COMB: spatial-spatial maps made using cm (contour map), in
which both axes are angular co-ordinates on the sky, and spatial-velocity maps (vc, velocity contour) in
which one axis is velocity. A map made by either of these two commands is displayed and automatically
stored in an image location which is analogous to a stack. Up to 5 images can be retained in memory at
the same time. These can be recontoured or overlaid with cp (contour plot). In addition to maps made
with cm or vc, any FITS image can be brought into COMB and stored in an image location using af
(attach FITS).

3PostScript is a registered trademark of Adobe Systems, Inc.

7 MAKING MAPS 15

7.1 Relative Coordinates

The first thing that is needed to make a contour map is a relative coordinate system to make it on.
This is done with rc. Usually the coordinate system is centered on the object of interest and is parallel
to Equatorial (α, δ) or Galactic coordinates (`, b). There is full support of Equatorial, Galactic, and
user-definable coordinates.

The easiest way to make a relative coordinate system is to take it from stack 1:

-> ns ’SESTreduced’; rt 10

-> rc ’SEST’ fs: Make a relative coordinate system named ’SEST’ with the
same center and offset type as that now in stack 1. fs: stands
for “from stack.”

-> rc sl:; rc nd: Store these coordinates locally (sl:) and name this coordinate
system as the default (nd:) for this stacks directory.

The name of the relative coordinate system and the coordinates themselves are now entered in the file
.LCOORDS (“local coordinates”) in your home directory, and the file SESTReduced/default now con-
tains the name of the relative coordinate system. Coordinates in .LCOORDS are accessible only to you.
Subsequent calls to ns will automatically use these two files to define the relative coordinate system. You
can store changes to the coordinates of the named coordinate system using the flag rl: (replace locally).
The flags sg: (store globally) and rg: (replace globally) will write to the file /usr/comb/.GCOORDS
(“global coordinates”). Coordinates stored in this file are accessible to all users.

7.2 Spatial-Spatial Maps

Normally, contour maps are made in the current relative coordinate system. This is not a true projec-
tion. You may specify a projection with op (options). Possible projections are orthographic, mercator,
gnomonic, and polar.

-> ns ’/usr/you/OrionA/12co’

Current relative coordinate system:

SYSTEM NAME | CENTER COORDINATES | OFFSET TYPE

OriA | rd(1950.0) 5:32:47.0, - 5:24:30 | odra(’) oddec(’)

-> cm,30,−30,−40,40,61,81 vl:2,16 ci: ir:1.2 st:10 mlb:’OrionA T∗dV V = 2 to 16 km/s’

Computing array for map

Getting stack values

Constructing map

Displaying map

The above command string asks COMB to compute a 60′ by 80′ integrated intensity map centered on
the above relative coordinates. The first four arguments are the boundaries in units of the current map
offset type, in this case arcminutes. The next two arguments are the number of spatial points on each
axis at which to compute a value. In general, one or two times the beam sampling is appropriate. In
this case, the map will consist of 4941 points. The next argument, marked by the label vl:, indicates
the velocity limits of the integration. Interpolation type is given by ci: (cone interpolate) with an
interpolation radius (ir:) of 1.2 arcminutes. The map is to be contoured at a step size (st:) of 10 K
km s−1 and a main label (other than the default) for the plot is specified. The resulting map is shown
in Figure 4.

7 MAKING MAPS 16

-> im mv:1,2 Copy image 1 to image 2 so the subsequent calls to cm don’t
overwrite it. mv: stands for “move.”

-> cm vl:2,3 Recompute map, integrating between 2 and 3 km s−1. All
other map parameters are kept the same, except the main label
which reverts to its default string.

-> do 13 {cm vl:&+1,&+1} Step through the data cube, computing maps at 1 km s−1 in-
tervals.

You may want to compute a map of some quantity other than integrated intensity. This is done
with the label m: (macro). The macro label tells cm to use the value returned by the specified macro.
You must already have defined the macro in either the stacks, local, or global macro files (See §8). For
instance, suppose you want to compute a map of maximum temperatures.

-> cm m:’Tmax’ Compute a contour map of values returned by the macro “Tmax”

The macro “Tmax” may look something like this:

Tmax - in,2,16 dp:; v .tmax

The macro “Tmax” does two things. First, it integrates the current stack between 2 and 16 km s−1 (cm
takes care of retrieving all the stacks). This assigns the value of the maximum temperature to .tmax,
as well as assigning values to other variables associated with the integration. The dp: flag means don’t
print the results. Secondly, it takes the value of the maximum temperature returned by in and “puts it
where cm can find it” with v (value).

7.3 Spatial-Velocity Maps

vc makes a spatial-velocity image (e.g., an `-v diagram) along a line between two given points in the
current relative coordinate system.

-> vc 0,−20,0,20 sp:1 ir:1 ci: vl:2,16 st:20 mlb:’OrionA 12co’

The above example makes a spatial-velocity contour map along the line between (0,20) and (0,−20).
Note that the input order of the spatial limits is different than for cm. The data is interpolated onto
points spaced by sp: in arcminutes. If the line is along a line of observations, sp: should be picked
so that the plotting points are commensurate with the data points. The map is shown in Figure 5. vc
needs an example stack in stack 1 to determine the number of channels on the vertical (velocity) axis of
the map (just retrieve any stack if vc complains about this). It remembers the filter width in that stack
and only uses stacks with that filter width.

7.4 Recontouring Maps with cp

You can recontour a map with cp without recomputing it. By default, it works on image 1.

-> cp sc:[5,50,10,54,15,59] Recontour image 1 using the specified contours.

The flag sc:, which also can be used in cm and vc, allows you to specify the contour levels and line
types explicitly. The general form is sc:[level, line type, level, line type, . . .]. The square brackets are
required. A line type is given by a value between 0 and 99 and is coded by the two digits. The ten’s
digit controls the thickness with 0 thin and 9 thick. The units digit controls the dottedness with 0 most
dotted and 9 solid, e.g., 50 is a dotted line of medium thickness, 54 is dot-dash line of medium thickness,
and 59 is a solid line of medium thickness. This coding allows 99 different line types. See Figure 6.

8 ADVANCED PROCESSING: MACROS 17

The flag ovl: and label cl: allow you to overlay two (or more) images and specify cutoff limits for
contour levels, respectively.

-> cp cl:10,20 st:2 Contour only values between 10 and 20
with a step size of 2 K km s−1.

-> cp im:1 st:2; cp im:2 ovl: Overlay image 2 on image 1
-> lk 30,−30,−40,40 mlb:’ ’ hlb:’ ’ vlb:’ ’; cp im:2 st:10 ovl:

Display the look map and then overlay the OrionA map stored
in image 2 on it. Look maps cannot not stored in an image
location, so you must invoke lk each time. See Figure 7.

7.5 Reading/Writing FITS images

Any two-axis FITS image can be read from disk or tape into any of the image locations 1 through 5
using af.

-> af ff:’mbm12.13co’ im:1 Read a 13CO map of MBM12 from disk
into image 1.

-> af ff:’mbm12.100um’ im:2 Read an 100µm map of MBM12 from disk
into image 2.

-> cp im:1 st:2 mlb:’ ’ hlb:’ ’ vlb:’ ’ Contour image 1, leaving the labels blank
so they are not drawn over each other in
the subsequent overlay.

-> cp im:2 sc:[4E6,15,8E6,35,1.2E7,55,1.6E6,75,2E7,95] mlb:’MBM12 13CO/100 micron’ ovl:

Overlay the 13CO and 100µm maps, using dashed contours for
image 2. See Figure 8.

-> sp fn:’MBM12.13co-100.sp’ Make a scatter plot file of image 1 vs. im-
age 2, suitable for reading into mongo

Similarly any image can be written to tape or disk with wf (write FITS), e.g., wf ff:’/dev/rmt12’
im:3.

8 Advanced Processing: Macros

COMB’s true power and flexibility lie in the ability to allow you, the user, to construct your own
macros. A macro is a small program which allows you to perform arbitrarily complicated operations
without having to do much typing. Macros are kept in separate ASCII files which can be editted with
the default editor. There are three types of macro files:

1. The global macros file (editted with the dm g:). This file resides in /usr/comb/.GMACROS and
contains macros accessible to all users.

2. A local macros file which resides in your home directory in .LMACROS and is accessible to only
you. It is editted with dm l:.

3. A stacks macros file associated with each stacks directory, e.g., SESTreduced/macros. This file is
used for macros specific to the data in that directory and is editted with dm st:.

8 ADVANCED PROCESSING: MACROS 18

When a macro is referred to, either on the command line or by a another macro, COMB will search
in these macros files until it finds a match. The order of the search is directory 1 stacks macros (if
directory 1 is open), directory 2 stacks macros (if directory 2 is open), local macros, and global macros.
COMB will stop searching at the first match and execute the macro.

A macro definition is simply a four-character macro name followed by the string of COMB com-
mand(s) which the name is to replace. For instance,

cmap - cm,30,–30,–30,30 ir:1 st:1 vl:0,10 ci: mlb:’This space for rent.’; wf ff:’map.fits’

is a rather simple example. There must be at least 3 characters between the end of the macro name and
the beginning of its definition. (By convention, we use [space][minus][space]). Macros, like commands,
can have input arguments. Before we discuss these, we must first digress briefly on variables in COMB.

8.1 Variables

COMB has four types of user-settable variables: global variables, global strings, macro arguments, and
header variables. In general, you will only want to set the first three types. Usually, the user is only
interested in reading header variables, but occasionally may want to write to them.

8.1.1 Global Variables

The symbols #0 through #9 can be used to hold user-defined numeric constants. These are set these
with either the p (print) or c (calculate) commands. They can be used wherever you would normally
use a number.

-> c #1=25 This is the same as p #1=25, except that it doesn’t print the
value.

-> p #1

25

-> c #=30 Note # is the same as #0
-> cm vl:#,#1 Make a map integrated between 25 and 30 km s−1.

Expressions may be used on either side of the = sign.

-> c #(8-1)=3∗4ˆ5

-> p #7

3072

8.1.2 Global Strings

User-definable character strings are stored in symbols $0 through $9 ($ is the same as $0).

-> p $1=’some string’

some string

-> cm vl:#,#1 mlb:$1 Same map with new main label

The command pr is a link to the C standard library routine printf and has a very similar form, i.e.,
, pr conversion format, variable. It can use the printf format conversion characters %s, %e, %f, and
%g. There is a similar link to scanf via the command sc.

8 ADVANCED PROCESSING: MACROS 19

-> c #1=300

-> pr ’I have %g toes.’,#1 Print the string followed by the value of #1
I have 300 toes.

With the flag gs: (global string), the output of pr can be stored in any of the 10 global string locations,
which can then be passed on as an argument to other commands.
-> pr ’I have %g toes.’,#1 gs:3 Redirect the output of pr to global string 3
-> p $3

I have 300 toes.

-> rt 10;pl mlb:$3 Plot stack 10 with a silly main label

8.1.3 Stack Header Variables

Each stack is divided into blocks of 256 16-bit words; the first of these contains header information such
as scan number, coordinates, and center frequency. The first 128 words of the header block contain 128
short integers. The second half of the header block contains real numbers and other constants. Each of
these numbers has an associated variable name to which the user may refer when a particular header
value is needed. You can access the header values of any of the core-resident stacks (i.e., stacks 1, 2 or
3). For instance, .ibsln is the baseline order of the spectrum in stack 1, .ibsln2 is that in stack 2, .ibsln3
is that in stack 3.

-> rt 10; p .ra Print the right ascension of stack 10
2.89194

-> ph .ra Print the RA of stack 10 in HMS format
2:53:31.0
-> in,2,16 Integrate the stack between 2 and 16 km s−1. This will assign

values to .tmax, .area, and other variables associated with the
integration.

Stack From(Km/s) To (Km/s) Tmax Area(K∗Km/s) Centroid(Km/s) Peak

1743 2.000 16.000 65.791 357.921+/- 1.062 8.886 9.520

-> pr ’Tmax = %g T∗dV = %g’, .tmax, .area gs:1; pl mlb:$1
Plot stack 10 with a main label indicating it’s maximum tem-
perature and integrated area.

-> do 100 {rt &+1; do i:{.ra<3:00} {in dp:;p .tmax nl:;p .area}; }
Go through the first 100 stacks and, if the right ascension is
less than 3h, integrate the spectrum, and print out its .tmax
and .area on the same line (nl:).

Note some variables, like .tmax and .area, will have zero value until the command which calculates them
is called. You can assign new values the header variables with c or p. To save the new values, you must
rewrite the stack with st.

-> rt 10; c .vlsr=20; st 10 dc: Change the LSR Velocity of stack 10.

The actual values of each channel of the stack are kept in the array .stak

-> p .stak(128) Print the value of channel 128

For a list of the names and descriptions of the stack header variables type doch at the -> prompt.

8 ADVANCED PROCESSING: MACROS 20

8.1.4 Labelling Inside Plots

Now that we have introduced pr, ph and header variables, we can digress yet again on plot labelling.
You can place labels inside spectra or maps using gm (graphics manipulation). (This is in addition to
normal labelling outside plots using mlb:, hlb:, and vlb:). gm uses the label ti: (title) followed by
the text you wish to place and the coordinates in current plot units of where you wish to place it.
-> rt 220;pl d: The d: toggle in pl is used to plot the spectrum with or with-

out the header information. In this case, without.

-> gm ti:‘DR21 CO(1-0)’ 25,20 The label starts at V = 25, and is centered on TA = 20.

You can also use pr or ph to pass values to gm.
-> ph .ra+.dra gs:1 Store the RA plus any offset in global string

1, using HMS format.
-> ph .dec+.ddec gs:2 Store the DEC plus any offset in global

string 2.

-> pr ’RA = %s’ $1 gs:3; pr ’DEC = %s’ $2 gs:4 Put the RA and DEC in labels to be used
for the plot. The labels are stored in global
strings 3 and 4.

-> gm ti:$3 25,18; gm ti:$4 25,16 Place the labels on the plot. See Figure
9.

We could have used cr (cursor read) to tell gm where we wanted the labels. cr will read the position
from the cursor and place the coordinates in the arrays x() and y(). The array indices start from zero.
-> cr 2 Read two positions from the cursor. The

results are placed in x(0), y(0), x(1) and
y(1).

-> gm ti:$3 x(0), y(0); gm ti:$4 x(1), y(1) Place the labels at the read positions.

cr is also useful for getting positions from contour maps.

-> cr;rt rc:x(0),y(0) Make one cursor read (from a contour map)
and then retrieve the spectrum at that po-
sition.

Both gm and cr are useful for other operations. See the examples under gm ?!, cr ?! and da ?! (define
area).

8.2 Macro Arguments

The symbols !0 through !9 represent macro arguments, where !0 refers to the first argument, !1 refers
to the second, etc. Macro arguments do not have to be numbers; they can also be strings, expressions,
global or string variables, lists, or ranges. Consider the macro definition

gfit - c #1=!0; do !1 {rt #1;pl vl:;gf !2,!3 see:;c #1=#1+1}

and the call
-> gfit,10,30,-4,4

The call to the macro gfit fits a gaussian profile to each of the spectra in stacks 10 through 30. First
the global variable #1 is given the value of first argument !0, i.e., the first stack number to retrieve.
This is necessary because, unlike global variables #0 through #9, macro argument values cannot be set

8 ADVANCED PROCESSING: MACROS 21

in arithmetic expressions, e.g., c !0=!0+1 is illegal. The do loop is executed 30 times (!1). Inside the
loop, a gaussian is fit between −4 and 4 (!2 and !3) km s−1. The flag see: causes gf to overlay the
fitted profile on the emission profile. Finally, #1 is incremented in order to fetch the next stack on the
next iteration of the loop.

8.3 Some Useful Macros

The following is a typical stacks macros file, containing some macros used frequently at Bell Labs. As
purely convention, we mark comment lines with a %. COMB does not distinguish between these lines
and lines which actually contain a macro definition. The macros are individually explained at the end
of the listing.

look - lk,.75,.5,-.15,.15 mlb:’SgrB2 CS Stacks’
base - us !0 st:;c #1=!1; do !2 {rt #1;li !3;st #1 dc:;c #1=#1+1}

% Movie plotting package
% #1 - File extension number.
% #2 - Begining velocity.
% #3 - End velocity.
% #4 - Velocity step size.

init - p #1=0;p #2=-50;p #3=160;p #4=5;p #5=(#3-#2)/#4
sour - pr ’SgrB2’ gs:1
file - pr ’/usr/you/images/%s.%g’, $1, #1 gs:2
labl - pr ’%s CS(2-1) V= %g to %g km/s’ $1,#2,#3 gs:3
step - c #2=#2+#4; c #3=#3+#4 ;c #1=#1+1

map0 - init;sour;labl;file;cm,.75,-.5,-.15,.15,153,37 ir:1 ci: vl:#2,#3 st:5 \
mlb:$3 o:$1 ;wf ff:$2 im:1;c #3=#2+#4 ;c #1=#1+1

map1 - sour;do #5 {labl;file;cm vl:#2,#3 st:1 mlb:$3 o:$1 ;\
step;wf ff:$2 im:1}

movi - map0;map1

map2 - init;sour;labl;cm,.75,.44,-.15,.06,108,72 ir:1 ci: vl:#2,#3 st:5 \
mlb:$3 o:$1 ;hc a:;c #3=#2+#4 ;c #1=#1+1

map3 - sour;do #5 {labl;cm vl:#2,#3 st:1 mlb:$3 o:$1 ;\
step;hc a:}

mapr - map2;map3

look We usually define a macro called “look” for each stacks direc-
tory to make a look map specific to those stacks. This is so we
don’t have to remember exactly what the spatial limits for the
stacks are. In this case, the offsets are in degrees.

8 ADVANCED PROCESSING: MACROS 22

base Baseline or re-baseline many stacks. The use-array is set to the
range specified in !0. This removes a (!3)-order baseline from
!2 spectra starting at the (!1)th stack. The stack is stored in
its original location without asking if it is OK to overwrite the
original spectrum. E.g., base, 40 140,10,2,1000 will remove
a 2nd order baseline from the first 1000 stacks.

The next group of macros are used to make slices of the datacube and output to FITS files with names
of the form required by the program movie, i.e., filename.0, filename.1, filename.2. . . (see appendix B).
The comment lines describe the use of global variables #1 through #4. You will want to edit some of
these to tailor them to your own requirements.

init Initializes the global variables. Edit this line to change the
beginning and end velocities, and the velocity resolution of the
maps/images.

sour Source label for FITS header. This is stored in global string 1.
file Global string 2 is used to store the name of the FITS file,

gotten from global string 1, and its extension number, which
is gotten from #1.

labl Controls plot labels, which are stored in global string 3.
step Increments variables #1, which is the file extension number,

and #2 and #3 which are the limits of the velocity integration
used in cm.

map0 Initializes the contour map parameters and produces a contour
map on screen and a FITS image on disk in the directory speci-
fied by file macro. The \ is a continuation character that tells
COMB’s parser there is more of the command on the next line.
The \ must be the last character on the line, i.e., no spaces
after it. The \ can also be used on the command line (at the
->).

map1 Repeat the map and image making for #5 iterations, i.e., com-
pute #5 separate slices through the data cube. #5 is set by
the init macro. Note that only the parameters to cm which
change from map to map are specified. All others are kept the
same as in map0.

movi Runs map0 followed by map1.
map2 Same as map0 except it sends the contour plots to the laser

printer (hc a:) and does not write a FITS file.
map3 Same as map1 except it sends the contour plots to the laser

printer (hc a:) and does not write a FITS file.
mapr Runs map2 followed by map3.

Thus, after defining these macros in a macros file, all you need to do to compute the images for a
‘movie’ is
-> movi

The macros are sufficiently flexible that you need only modify them slightly for different sources (data
sets).

9 FIGURES 23

9 Figures

Figure 1 — A ‘look map’ made with lk. The location on the sky of a spectrum is marked with it’s ‘stack
number’. Axis units are arcminute offsets from the central coordinate.

9 FIGURES 24

Figure 2 — a) A spectrum plotted with pl. The ‘tick grid’ and line type are changeable (see e.g., Figure
3a). b) The spectrum with a first-order baseline removed. The horizontal line segments just
above the velocity axis label indicates the portion(s) of the spectrum included in the baseline
fit, known as the ‘use array.’

9 FIGURES 25

Figure 3 — a) A spectrum from the 12.5 kHz/channel backend. The line takes up too much of the band
to remove a good baseline. It is plotted in histogram style with no tick grid (pl hst:tk:). b)
The spectrum at the same position taken simultaneously with the 250 kHz/channel backend.
It can be used to compute a baseline for removal from the 12.5 kHZ/channel spectrum (li
1 xt:).

9 FIGURES 26

Figure 3 (cont.) — c) Baseline removed from 250 kHz/channel spectrum. Same baseline is automatically
removed from 12.5 kHz/channel spectrum. d) Overlay plot of the two spectra to compare
the baseline fits.

9 FIGURES 27

Figure 4 — Contour map of 12CO in Orion A made with cm. The string in the lower left hand corner
gives information about how the map was made. The contour step size is 10 K km s−1

between 10 and 380 K km s−1. The data are smoothed over 1.2 arcminutes (ir:1.2) with
a cone interpolation (ci:). Axis units are arcminute offsets from central relative coordinate
(rc:).

9 FIGURES 28

Figure 5 — An spatial-velocity (δ-v) diagram of Orion A made with vc.

9 FIGURES 29

Figure 6 — Same as Figure 5 but recontoured using cp sc: (contour plot with specified contours) to
show a few of the 90 different line types.

9 FIGURES 30

Figure 7 — An OrionA ‘look map’ indicating the position on the sky of spectra with a integrated intensity
map overlaid on it, made using lk (look) and (cp ovl:) (contour plot with overlay flag).

9 FIGURES 31

Figure 8 — Overlay of 13CO and IRAS 100µm maps of the dark cloud MBM12, made using af (attach
FITS) and cp ovl: (contour plot with overlay flag).

9 FIGURES 32

Figure 9 — An example of labelling inside plots using gm (graphics manipulation).

A HOW TO INSTALL COMB 33

Appendix A: How to Install COMB

COMB can be be installed by porting the contents of /usr/comb on a tar tape from Bell Labs to
the new machine. The source code is recompiled by using the shellscripts cleancomb and makecomb
in /usr/comb/bin. You can only install COMB on a UNIX system. Read this entire appendix before
attempting installation.

Here are the steps necessary to install COMB.

1. Create a directory in which to install COMB. Here we will assume it is in /usr, although it doesn’t
need to be.

$ mkdir /usr/comb

2. Change to comb directory and extract tar file.

$ cd /usr/comb

$ tar -xv /dev/rmt12

3. If you are using ksh, edit your .profile file so that it contains the strings:

PATH=$PATH:/usr/comb/bin

COMB=/usr/comb

export COMB PATH

For csh or tcsh, edit the .login file:

PATH=$PATH:/usr/comb/bin

setenv COMB /usr/comb

4. COMB uses an editor for editting macro files and command lines stored in ksh-like history file
($HOME/.combhistory). At Bell Labs, we use the vi editor, but emacs is also available to COMB
if you prefer. To specify the editor of choice, edit your .profile (or .login) to contain the string

VISUAL=/usr/ucb/vi (or emacs if you prefer)

export VISUAL

Again, for csh or tcsh,

setenv VISUAL /usr/ucb/vi (or emacs)

5. Next, compile COMB using the utilities located in /usr/comb/bin. First, the old object code must
be removed from the obj subdirectory.

$ cleancomb

Then the compilation is done using the makefile in /usr/comb/bin.

$ makecomb install

Compilation should take about 30 minutes on a SUN-4.

A HOW TO INSTALL COMB 34

6. To attach a printer for hardcopy graphics output, you need to modify the file /usr/comb/lib/hc.lpr
to contain the name of your printer. COMB supports three types of hardcopy output devices:
PostScript language laser printers (laser, aaser, . . .), Impress language laser printers (imagen,
jmagen, . . .), and an HP7580 pen plotter using hpgl. The shell script hc.lpr queues the plot file
for plotting using the lpr spooler for the laser printers. Edit the shell script and after PRINTER=,
put in the name by which the device is recognized in UNIX. The first character of the UNIX name
is used in the hard copy command e.g., , hc a:. You can remove all the other unused names. If
you have an HP pen plotter, its device name should be put into the character array devname[] in
/usr/comb/src/graphics/hpplot .c before compilation.

Note that since hc.lpr is a shell script and not a compiled routine, you can change it without
recompiling COMB. In fact, it is useful to run COMB in one window while changing the shell
script in another until you get what you want.

7. The history mechanism may not easily work on operating systems other than SunOS or BSD 4.X.
On such systems, it would be safest to first compile COMB without the ksh history mechanism.
To do this you need to make two changes:

• In /usr/comb/src/man/C.h, change the line

#define HISTORY 1

to

#define HISTORY 0

• In /usr/comb/bin/makecomb, comment out the lines

for i in coordsys error graphics image main misc misc/libut misc/libedit\
parse parse/entree scan stacks

and remove the # from the two lines below it, i.e., “uncomment” the lines

for i in coordsys error graphics image main misc misc/libut\
parse parse/entree scan stacks

If you have already run makecomb before making these changes, you must run cleancomb again,
i.e., repeat step 5 above.

B FITS SOFTWARE 35

Appendix B: FITS Software

Facilities for viewing FITS images on a Sun workstation running SunView are located in the file
/usr/comb/src/util/FITSView. (You don’t need COMB to run these.) A nice feature of these pro-
grams (written by Bob Wilson and Marc Pound) is that they can provide “full color” on an 8-bit color
monitor by using a dithering algorithm (with 3 bits of red, 3 bits of green, and 2 bits of blue). The
programs are called

ql quick look, display a single monochrome or pseudo-color FITS image

rgb rgb display of 3 FITS images simultaneously on an 8-bit monitor

movie Run a time lapse monochrome, pseudo-color, or 3-color movie from a stack of FITS images on
disk.

rgb24 rgb display of 3 FITS images simultaneously on a 24-bit monitor

These programs need to be compiled separately from COMB . Full documentation is provided in
README and FITSView.doc in the FITSView subdirectory. They are also available in a shell archive
package (shar) via e-mail.

C LIST OF COMB COMMANDS 36

Appendix C: List of COMB Commands

ad Add scans to stack 2
af Attach a FITS file to an image
bc Designate bad channels
c Calculate something
ca Calculate values from stacks
cc Change center channel
cm Space-space Contour Map
co Combine two stacks, result in 1 & 2
cp Contour Plot an image
cr Cursor read
da Define an area of an image
dm Define macro
do Loop through a command string
e Execute a shell command
el Eliminate bad chans in stack 1.
em Empty a stack
fl Flag location on graph
fo Fold freq switched data in stack 1
ft Fourier transform data in stack1
gf Fit a gaussian function to part of a spectrum
gm Graphics Manipulation
gt Put scan in st 1
hc Make a hard copy of the current screen
im Image Manipulate
in Integrate part of a spectrum
is Interpolate a spectrun for a given position
jb Calculate line widths from stack 1 (J. Bally’s custom command)
lc List commands li - Fit and remove a polynomial baseline
lk Look at where stacks are
me M ap data Extraction
nf Switch data files
ns Name stacks directory
op Set options
p Print something
pa Pause in execution
pd Print data
pf Fit a parabola to part of a spectrum
ph Print in hms format
pl Plot stack 1
pr Printf to standard output or a global string
q Exit comb
rc Define relative coordinate system
ri Redirect command input
rm Calculate rms and ssb noise figure for stack 1
ro Redirect output to a file
rs Rescale and add constant to stack 1
rt Retrieve stack
sc Scanf from a file or global string

C LIST OF COMB COMMANDS 37

sl Make a slice through an image
sp Make a scatter plot comparing two images
sq Squish - increase or decrease chan width
st Store stack
tp Total power - average chans in stack 1 weighted by cal in stack 3
up Update a stacks directory
us Change use array
v Compute value for map
vc Velocity Space Contour Plot
vm Calculate Virial Mass
wf Write an image to a FITS file
wr Write scan back onto file
xf Transfer stacks to directory 2 after making them unique (1 per position)

C LIST OF COMB COMMANDS 38

Appendix D: For More Info

The authors of this document will be happy to answer any questions you have about COMB. It is
possible, but discouraged, to write your own routines for COMB, i.e., make a new command. You
should be able to do any reasonable operation using macros. However, if you think you really need a
new COMB command, consult Bob Wilson. If you think you’ve found a bug in COMB, report it to
Bob Wilson. If you think you’ve found a bug in this cookbook, report it to Marc Pound.

Marc W. Pound
Astronomy Program
University of Maryland
College Park, MD 20742
Tel: (301) 454-3001

John Bally
AT&T Bell Laboratories
P.O. Box 400
HOH L245
Holmdel, NJ 07733-1988
Tel: (908) 888-7124

Robert W. Wilson
AT&T Bell Laboratories
P.O. Box 400
HOH L239
Holmdel, NJ 07733-1988
Tel: (908) 888-7120

